Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/070689176 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We establish asymptotic expansions for nonautonomous gradient flows of the form (u) over dot(t) = -del f(u(t), r(t)), where f(x, r) is a penalty approximation of a linear program and the penalty parameter r(t) tends to 0 as t -> infinity. Under appropriate conditions we show that every integral curve satisfies u(t) = u(infinity) + r(t) d(0)* + (r) over dot(t)r(t) w(0)* + o((r) over dot(t)r(t)) for suitable vectors u(infinity), d(0)*, and w(0)*. We deduce an asymptotic expansion for a related dual trajectory, and we show that the primal-dual limit point is a pair of strictly complementary optimal solutions for the linear program.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Baillon, J-B | Hombre |
Univ Paris 01 - Francia
Université Paris 1 Panthéon-Sorbonne - Francia |
| 2 | COMINETTI-COTTI-COMETTI, ROBERTO MARIO | Hombre |
Universidad de Chile - Chile
|