Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/080736867 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let G be a Lie group. In order to study optimal control problems on a homogeneous space G/H, we identify its cotangent bundle T*G/H as a subbundle of the cotangent bundle of G. Next, this identification is used to describe the Hamiltonian lifting of vector fields on G/H induced by elements in the Lie algebra g of G. As an application, we consider a bilinear control system Sigma in R-2 whose matrices generate sl(2). Through the Pontryagin maximum principle, we analyze the time-optimal problem for the angle system P Sigma defined by the projection of S onto the projective line Sigma(1). We compute some examples, and in particular we show that the bang-bang principle does not need to be true.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | AYALA-BRAVO, VICTOR ALBERTO JOSE | Hombre |
Universidad Católica del Norte - Chile
Univ Fed Amazonas - Brasil Universidade Federal do Amazonas - Brasil |
| 2 | RODRIGUEZ, JULIO CESAR | Hombre |
Universidad Católica del Norte - Chile
|
| 3 | BARRERA-SAN MARTIN, LUIZ ANTONIO | - |
UNIV ESTADUAL CAMPINAS - Brasil
Universidade Estadual de Campinas - Brasil |
| Fuente |
|---|
| CONICYT |
| CNPq |
| FAPESP |
| Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
| Instituto de Matematica Estatisticae Ciencias da Computacao, Universidade Estadual de Campinas |
| Agradecimiento |
|---|
| This research supported by CONICYT Proyecto D-21070955. Instituto de Matematica Estatisticae Ciencias da Computacao, Universidade Estadual de Campinas, Cx. Postal 6065, 13081-970 Campinas SP, Brasil (smartin@ime.unicamp.br). This research supported by CNPq grant 305513/2003-6 and FAPESP grant 07/06896-5. |