Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/IMRN/RNP111 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We show that the Landau levels cease to be eigenvalues if we perturb the 2D Schrodinger operator with a constant magnetic field, by bounded electric potentials of fixed sign. We also show that, if the perturbation is not of fixed sign, then any Landau level may be an eigenvalue of the perturbed problem.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Klopp, Frederic | Hombre |
Univ Paris 13 - Francia
Universite Paris 13 - Francia University Sorbonne Paris Nord - Francia |
| 2 | Raikov, Georgi | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Chilean Scientific Foundation Fondecyt |
| Nucleo Cientifico ICM |
| Chilean Scientific Foundation |
| Agradecimiento |
|---|
| The authors were partially supported by the Chilean Scientific Foundation Fondecyt with grants of no. 7080135 and 1050716. Also, G. Raikov acknowledges the partial support by Nucleo Cientifico ICM, P07-027-F, "Mathematical Theory of Quantum and Classical Magnetic Systems." |
| The authors were partially supported by the Chilean Scientific Foundation Fondecyt with grants of no. 7080135 and 1050716. Also, G. Raikov acknowledges the partial support by Núcleo Científico ICM, P07-027-F, “Mathematical Theory of Quantum and Classical Magnetic Systems.” |