Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1112/PLMS/PDP022 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We make the first steps towards an understanding of the ergodic properties of a rational map defined over a complete algebraically closed non-archimedean field. For such a rational map R, we construct a natural invariant probability measure (R) which represents the asymptotic distribution of preimages of non-exceptional points. We show that this measure is exponentially mixing, and satisfies the central limit theorem. We prove some general bounds on the metric entropy of (R), and on the topological entropy of R. We finally prove that rational maps with vanishing topological entropy have potential good reduction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Favre, Charles | Hombre |
CNRS - Francia
Inst Math Jussieu - Francia CNRS - Brasil CNRS Centre National de la Recherche Scientifique - Francia Instituto Nacional de Matematica Pura E Aplicada, Rio de Janeiro - Brasil Institut de Mathématiques de Jussieu-Paris Rive Gauche - Francia |
| 2 | RIVERA-LETELIER, JUAN EDUARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|