Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1104/PP.109.147025 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Katari, Manpreet Singh | - |
NYU - Estados Unidos
New York University - Estados Unidos |
| 2 | Nowicki, Steve D. | Hombre |
NYU - Estados Unidos
New York University - Estados Unidos |
| 3 | Aceituno, Felipe F. | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Nero, Damion C. | Hombre |
NYU - Estados Unidos
New York University - Estados Unidos |
| 5 | Kelfer, Jonathan | Hombre |
NYU - Estados Unidos
New York University - Estados Unidos |
| 6 | Thompson, Lee Parnell | Hombre |
NYU - Estados Unidos
New York University - Estados Unidos |
| 7 | CABELLO, JUAN MANUEL | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 8 | Davidson, Rebecca S. | Mujer |
NYU - Estados Unidos
New York University - Estados Unidos |
| 9 | Goldberg, Arthur P. | Hombre |
NYU - Estados Unidos
New York University - Estados Unidos |
| 10 | Shasha, Dennis | Hombre |
NYU - Estados Unidos
Courant Institute of Mathematical Sciences - Estados Unidos New York University - Estados Unidos |
| 11 | Coruzzi, Gloria M. | Mujer |
NYU - Estados Unidos
New York University - Estados Unidos |
| 12 | GUTIERREZ-ILABACA, RODRIGO ANTONIO | Hombre |
NYU - Estados Unidos
Pontificia Universidad Católica de Chile - Chile New York University - Estados Unidos |
| Fuente |
|---|
| FONDECYT |
| National Science Foundation |
| National Institutes of Health |
| Millennium Nucleus for Plant Functional Genomics |
| National Institute of General Medical Sciences |
| Grape Genomics |
| Agradecimiento |
|---|
| This work was supported by the National Science Foundation (grant nos. DBI 0445666 to R. A. G., D. E. S., and G. M. C., IOB 0519985 to G. M. C. and D. E. S., and MCB-0209754 to D. E. S.), FONDECYT (grant no. 1060457), Grape Genomics (grant no. CORFO07Genoma01 to R. A. G.), Millennium Nucleus for Plant Functional Genomics (grant no. P06-009-F to R. A. G.), and the National Institutes of Health (grant nos. R01 GM 032877 to G. M. C. and 5F32GM75600 to M. S. K.). |