Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00033-009-0036-9 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper considers the periodic spectral problem associated with the Laplace operator written in R(N) (N = 3, 4, 5) periodically perforated by balls, and with homogeneous Dirichlet condition on the boundary of holes. We give an asymptotic expansion for all simple eigenvalues as the size of holes goes to zero. As an application of this result, we use Bloch waves to find the classical strange term in homogenization theory, as the size of holes goes to zero faster than the microstructure period.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | SAN MARTIN-HERMOSILLA, JORGE ALONSO | Hombre |
Universidad de Chile - Chile
CNRS Centre National de la Recherche Scientifique - Francia |
| 2 | Balilescu, Loredana | Mujer |
Univ Pitesti - Rumania
University of Pitesti - Omán |