Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A numerical comparison between simulated annealing and evolutionary approaches to the cell formation problem
Indexado
WoS WOS:000277726300088
Scopus SCOPUS_ID:77950189308
DOI 10.1016/J.ESWA.2010.02.064
Año 2010
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The cell formation problem is a crucial component of a cell production design in a manufacturing system. This problem consists of a set of product parts to be manufactured in a group of machines. The objective is to build manufacturing clusters by associating part families with machine cells, with the aim of minimizing the inter-cellular movements of parts by grouping efficacy measures. We present two approaches to solve the cell formation problem. First, we present an evolutionary algorithm that improves the efficiency of the standard genetic algorithm by considering cooperation with a local search around some of the solutions it visits. Second, we present an approach based on simulated annealing that uses the same representation scheme of a feasible solution. To evaluate the performance of both algorithms, we used a known set of CFP instances. We compared the results of both algorithms with the results of five other algorithms from the literature. In eight out of 36 instances we considered, the evolutionary method outperformed the previous results of other evolutionary algorithms, and in 26 instances it found the same best solutions. On the other hand, simulated annealing not only found the best previously known solutions, but it also found better solutions than existing ones for various problems. (C) 2010 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Pailla, Andres Hombre Universidad de Santiago de Chile - Chile
2 Trindade, Athila R. - Univ Fed Fluminense - Brasil
Universidade Federal Fluminense - Brasil
3 Parada, Victor Hombre Universidad de Santiago de Chile - Chile
4 Ochi, Luiz S. Hombre Univ Fed Fluminense - Brasil
Universidade Federal Fluminense - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
Comisión Nacional de Investigación Científica y Tecnológica
Millennium Scientific Institute: Complex Engineering Systems

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The first and third authors were supported by The Millennium Scientific Institute: Complex Engineering Systems ICM: P-05-004-F, CONICYT: FB016.
The first and third authors were supported by The Millennium Scientific Institute: Complex Engineering Systems ICM: P-05-004-F, CONICYT: FBO16.

Muestra la fuente de financiamiento declarada en la publicación.