Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1063/1.3357105 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper is devoted to the calculation of a special class of integrals by Mellin-Barnes transform. It contains double integrals in the position space in d=4-2 epsilon dimensions, where epsilon is parameter of dimensional regularization. These integrals contribute to the effective action of the N=4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is the logarithm of the ratio of space-time intervals, and the denominator is the product of powers of space-time intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of epsilon. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter delta. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of twofold Mellin-Barnes transform are the same as before the delta modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green's function of N=4 supersymmetric Yang-Mills theory can be expressed in terms of Usyukina-Davydychev functions. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3357105]
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Allendes, Pedro | Hombre |
Universidad de Concepción - Chile
|
| 2 | GUERRERO-CARRASCO, NATANAEL HUMBERTO | Mujer |
Universidad del Bío Bío - Chile
|
| 3 | Kondrashuk, Igor | Hombre |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| 4 | NOTTE-CUELLO, EDUARDO ALFONSO | Hombre |
Universidad de la Serena - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| FONDECYT (Chile) |
| DIUBB |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Universidad del BÃo-BÃo |
| Dirección de Gestión de la Investigación, Universidad de Antofagasta |
| Direccion de Investigacion de la Universidad de la Serena |
| DIUBB (UBB, Chile) |
| Agradecimiento |
|---|
| I. K. was supported by Fondecyt (Chile) under Grant Nos. 1040368 and 1050512 and by DIUBB (UBB, Chile) under Grant No. 082609. E.A.N.C. was supported by Direccion de Investigacion de la Universidad de La Serena (Grant No. DIULS CD091501). This paper was based on I.K.'s talks at El Congreso de Matematica Capricornio, COMCA 2009, Antofagasta, Chile, and at DMFA seminar, UCSC, Concepcion, Chile, and he thanks the organizers for the opportunity to present these results. |
| I.K. was supported by Fondecyt (Chile) under Grant Nos. 1040368 and 1050512 and by DIUBB (UBB, Chile) under Grant No. 082609. E.A.N.C. was supported by Dirección de Investigación de la Universidad de La Serena (Grant No. DIULS CD091501). This paper was based on I.K.’s talks at El Congreso de Matemática Capricornio, COMCA 2009, Antofagasta, Chile, and at DMFA seminar, UCSC, Concepción, Chile, and he thanks the organizers for the opportunity to present these results. |