Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2009 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Development of performant state estimators for industrial processes like copper extraction is a hard and relevant task because of the difficulties to directly measure those variables on-line. In this paper a comparison between a dynamic NARX-type neural network model and a support vector machine (SVM) model with external recurrences for estimating the filling level of the mill for a semiautogenous ore grinding process is performed. The results show the advantages of SVM modeling, especially concerning Model Predictive Output estimations of the state variable (MSE < 1.0), which would favor its application to industrial scale processes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ACUÑA-LEIVA, GONZALO PEDRO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | CURILEM-SALDIAS, GLORIA MILLARAY | Mujer |
Universidad de La Frontera - Chile
|
| 3 | Aguirre, AH | - | |
| 4 | Borja, RM | - | |
| 5 | Garcia, CAR | - |