Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10957-010-9668-3 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader's variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case, it yields a "better than fully polynomial time" approximation scheme with running time polynomial in the logarithm of the absolute precision. For the pure integer case where the leader's variables are integer, and hence optimal solutions are guaranteed to exist, we present an algorithm which runs in polynomial time when the total number of variables is fixed.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Koeppe, M. | - |
UNIV CALIF DAVIS - Estados Unidos
University of California, Davis - Estados Unidos |
| 1 | Köppe, M. | - |
University of California, Davis - Estados Unidos
|
| 2 | Queyranne, M. | Hombre |
CNRS - Francia
Universidad de Chile - Chile Sauder School of Business - Canadá UBC Sauder School of Business - Canadá |
| 3 | Ryan, C. T. | - |
UNIV BRITISH COLUMBIA - Canadá
Sauder School of Business - Canadá UBC Sauder School of Business - Canadá |
| Fuente |
|---|
| Natural Sciences and Engineering Research Council of Canada |
| Natural Sciences and Engineering Research Council (NSERC) of Canada |
| Agradecimiento |
|---|
| The research of the last two authors was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to the second author. |
| The research of the last two authors was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to the second author. |