Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||||
| DOI | |||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper addresses the problem of probability estimation in Multiclass classification tasks combining two well-known data mining techniques: Support Vector Machines and Neural Networks. We present an algorithm which uses both techniques in a two-step procedure. The first step employs Support Vector Machines within a One-vs-All reduction from multiclass to binary approach to obtain the distances between each observation and the Support Vectors representing the classes. The second step uses these distances as inputs for a Neural Network, built with an entropy cost function and softmax transfer function for the output layer where class membership is used for training. Consequently, this network estimates probabilities of class membership for new observations. A benchmark using different databases demonstrates that the proposed algorithm is highly competitive with the most recent techniques for multiclass probability estimation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | BRAVO-ROMAN, CRISTIAN DANILO | Hombre |
Universidad de Chile - Chile
|
| 2 | L'Huillier, Gaston | Hombre |
Universidad de Chile - Chile
|
| 3 | Lobato, Jose Luis | Hombre |
Universidad de Chile - Chile
|
| 3 | Luis Lobato, Jose | Hombre |
Universidad de Chile - Chile
|
| 4 | WEBER-HAAS, RICHARD | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| CONICYT |
| University of Chile |
| Chilean Instituto Sistemas Complejos de Ingeniera (ICM) |
| Agradecimiento |
|---|
| The first author would like to acknowledge the CONICYT grant that finances this research. Support from the Chilean "Instituto Sistemas Complejos de Ingeniera" (ICM: P-05-004-F, CONICYT: FBO16; www.nstemasdeingenieria.cl), from the PhD in Engineering Systems (for the first author) and Master in Operations Management (second and third author) of the University of Chile is greatly acknowledged. |