Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10884-010-9171-4 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Motivated by a problem in which a heteroclinic orbit represents a moving interface between ordered and disordered crystalline states, we consider a class of slow-fast Hamiltonian systems in which the slow manifold loses normal hyperbolicity due to a transcritical or pitchfork bifurcation as a slow variable changes. We show that under assumptions appropriate to the motivating problem, a singular heteroclinic solution gives rise to a true heteroclinic solution. In contrast to previous approaches to such problems, our approach uses blow-up of the bifurcation manifold, which allows geometric matching of inner and outer solutions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Schecter, Stephen | Hombre |
N Carolina State Univ - Estados Unidos
NC State University - Estados Unidos |
| 2 | Sourdis, Christos | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Agradecimiento |
|---|
| The research of S. S. was supported in part by the National Science Foundation under grant DMS-0708386. The research of C. S. was supported in part by FONDECYT under grant 3085026. |
| Acknowledgements The research of S. S. was supported in part by the National Science Foundation under grant DMS-0708386. The research of C. S. was supported in part by FONDECYT under grant 3085026. |