Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||||
| DOI | 10.4067/S0717-92002010000300002 | ||||||
| Año | 2010 | ||||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The Araucaria araucana forests have a high level of both ecological and scientific importance, because they are long-lived and endemic. Although there have been several ecological studies conducted concerning A. araucana forests, none has produced quantitative models. We compared parametric and non-parametric statistical methods for predicting stand variables from Landsat ETM+ derived variables from two A. araucana stands in south-central Chile. The assessed parametric methods were multiple linear regressions (MLR), generalized least squares with a non-null correlation structure (GLS), linear mixed-effects models (LME), and partial least squares (PLS); while the non-parametric methods were: k-nearest neighbor (k-NN) and most similar neighbor (MSN). In descending order, number of trees per ha (N), stand gross volume (V), stand basal area (G), and dominant height (H-dom) were the most difficult variables to be modeled by all the methods. LME with known random effects (i.e., LME1) performed best, achieving a root mean square showing differences (RMSD) for N and V of 18.31 and 4.08 % versus 33.06 and 33.05 % for the second-best method, respectively. However, within the parametric methods, LME1 cannot be used for predicting new observations with no data. After LME1, GLS performed the best; also accounting for the spatial correlation of the data. Parametric methods achieved lower errors. Furthermore, differences were greater among non-parametric than those among parametric methods, with a difference of 10-15 % between k-NN and MSN. Although, given our results, we favor parametric methods; we point out that non-parametric methods are also useful, and the choice between parametric and non-parametric methods depends on the ultimate objective of the study.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | SALAS-RIQUELME, CHRISTIAN EDUARDO | Hombre |
Universidad de La Frontera - Chile
YALE UNIV - Estados Unidos Universidad de La Frontera - Brasil Yale University - Estados Unidos |
| 2 | Ene, Liviu | Hombre |
Norwegian Univ Life Sci - Noruega
Norwegian University of Life Sciences - Noruega Universitetet for miljø- og biovitenskap - Noruega Norges Miljø- og Biovitenskapelige Universitet - Noruega |
| 3 | Ojeda, Nelson | Hombre |
Universidad de La Frontera - Chile
Universidad de La Frontera - Brasil |
| 4 | Soto, Hector | Hombre |
Universidad de La Frontera - Chile
Universidad de La Frontera - Brasil |