Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.AOP.2010.02.007 | ||||
| Año | 2010 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Universal vector wave equations allowing for a unified description of anyons and also of usual bosons and fermions in the plane are proposed The existence of two essentially different types of anyons based on unitary and also on non-unitary infinite-dimensional half bounded representations of the (2+1)D Lorentz algebra is revealed Those associated with non-unitary representations interpolate between bosons and fermions The extended formulation of the theory includes the previously known Jackiw-Nair UN) and MaJorana-Dirac (MD) descriptions of anyons as particular cases and allows us to compose bosons and fermions from entangled anyons The theory admits a simple supersymmetric generalization in which the JN and MD systems are unified in N=1 and N=2 supermultiplets Two different non-relativistic limits of the theory are investigated The usual one generalizes Levy-Leblond s spin 1/2 theory to arbitrary spin as well as to anyons The second Jackiw-Nair limit (that corresponds to Inonu-Wigner contraction with both anyon spin and light velocity going to infinity) is generalized to boson/fermion fields and interpolating anyons The resulting exotic Galilei symmetry is studied in both the non-supersymmetric and supersymmetric cases (C) 2010 Elsevier Inc All rights reserved
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Horvathy, Peter A. | Hombre |
Univ Tours - Francia
Université de Tours - Francia |
| 2 | Plyushchay, Mikhail S. | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | VALENZUELA-URIBE, MAURICIO ALEJANDRO | Hombre |
Univ Tours - Francia
Université de Tours - Francia |
| Fuente |
|---|
| FONDECYT (Chile) |
| Universidad de Santiago de Chile |
| CNRS |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Centre National de la Recherche Scientifique |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile |
| Departamento de Investigaciones CientÃficas y Tecnológicas, Universidad de Santiago de Chile |
| DICYF (USACH) |
| Agradecimiento |
|---|
| MP is indebted to the Laboratoire de Mathematiques et de Physique Theorique of Tours University and PAH is indebted to the Departamento de Fisica Universidad de Santiago de Chile respectively for hospitality Partial support by the FONDECYT (Chile) under the grant 1095027 and by DICYF (USACH) is acknowledged MV was supported by CNRS postdoctoral grant (contract number 87366) |
| MP is indebted to the Laboratoire de Mathématiques et de Physique Théorique of Tours University, and PAH is indebted to the Departamento de Física, Universidad de Santiago de Chile, respectively, for hospitality. Partial support by the FONDECYT (Chile) under the grant 1095027 and by DICYT (USACH) is acknowledged. MV was supported by CNRS postdoctoral grant (contract number 87366 ). |