Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.5194/HESS-15-223-2011 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection) are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to subsurface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa and other continents with geostationary satellite coverage.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Anderson, Martha C. | Mujer |
USDA - Estados Unidos
USDA ARS Beltsville Agricultural Research Center - Estados Unidos |
| 2 | Kustas, William P. | Hombre |
USDA - Estados Unidos
USDA ARS Beltsville Agricultural Research Center - Estados Unidos |
| 3 | Norman, J. M. | Hombre |
UNIV WISCONSIN - Estados Unidos
University of Wisconsin-Madison - Estados Unidos |
| 4 | Hain, Christopher | Hombre |
NOAA - Estados Unidos
NOAA National Environmental Satellite, Data and Information Service - Estados Unidos |
| 5 | Mecikalski, J. R. | - |
UNIV ALABAMA - Estados Unidos
The University of Alabama in Huntsville - Estados Unidos |
| 6 | Schultz, L. | - |
UNIV ALABAMA - Estados Unidos
The University of Alabama in Huntsville - Estados Unidos |
| 7 | Gonzalez-Dugo, Maria P. | Mujer |
IFAPA Andalusian Agr & Fisheries Dept - España
Instituto de Investigacion y Formacion Agraria y Pesquera - España Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica - España |
| 8 | Cammalleri, C. | - |
Univ Palermo - Italia
Università degli Studi di Palermo - Italia |
| 9 | d'Urso, G. | - |
Univ Naples Federico II - Italia
Università Degli Studi di Napoli Federico II - Italia |
| 10 | Pimstein, A. | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 11 | Gao, F. | - |
NASA - Estados Unidos
Earth Resources Technol Inc - Estados Unidos NASA Goddard Space Flight Center - Estados Unidos |