Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



The Effect of Explanations and Algorithmic Accuracy on Visual Recommender Systems of Artistic Images
Indexado
WoS WOS:000481595500043
Scopus SCOPUS_ID:85065591799
DOI 10.1145/3301275.3302274
Año 2019
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



There are very few works about explaining content-based recommendations of images in the artistic domain. Current works do not provide a perspective of the many variables involved in the user perception of several aspects of the system such as domain knowledge, relevance, explainability, and trust. In this paper, we aim to fill this gap by studying three interfaces, with different levels of explainability, for artistic image recommendation. Our experiments with N=121 users confirm that explanations of recommendations in the image domain are useful and increase user satisfaction, perception of explainability and relevance. Furthermore, our results show that the observed effects are also dependent on the underlying recommendation algorithm used. We tested two algorithms: Deep Neural Networks (DNN), which has high accuracy, and Attractiveness Visual Features (AVF) with high transparency but lower accuracy. Our results indicate that algorithms should not be studied in isolation, but rather in conjunction with interfaces, since both play a significant role in the perception of explainability and trust for image recommendation. Finally, using the framework by Knijnenburg et al., we provide a comprehensive model which synthesizes the effects between different variables involved in the user experience with explainable visual recommender systems of artistic images.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Dominguez, Vicente Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
2 Donoso-Guzmá, Ivania Mujer Pontificia Universidad Católica de Chile - Chile
Conversica - Chile
3 Messina, Pablo Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
4 PARRA-SANTANDER, DENIS ALEJANDRO Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
5 Assoc Comp Machinery Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
CONICYT
Millennium Institute for Foundational Research on Data (IMFD)
Westmead Millennium Institute for Medical Research
NeoStem

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors from PUC Chile were funded by Conicyt, Fondecyt grant 11150783, as well as by the Millennium Institute for Foundational Research on Data (IMFD).
The authors from PUC Chile were funded by Conicyt, Fondecyt grant 11150783, as well as by the Millennium Institute for Foundational Research on Data (IMFD).

Muestra la fuente de financiamiento declarada en la publicación.