Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/ASMB.847 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper discusses a new methodology for modeling non-Gaussian time series with long-range dependence. The class of models proposed admits continuous or discrete data and considers the conditional variance as a function of the conditional mean. These types of models are motivated by empirical properties exhibited by some time series. The proposed methodology is illustrated with the analysis of two real-life persistent time series. The first application is concerned with the modeling of stock market daily trading volumes, whereas the second application consists of a study of mineral deposit measurements. Copyright (C) 2010 John Wiley & Sons, Ltd.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | PALMA-MANRIQUEZ, WILFREDO OMAR | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Zevallos, Mauricio | Hombre |
UNIV ESTADUAL CAMPINAS - Brasil
Universidade Estadual de Campinas - Brasil |