Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1017/S0143385709001163 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We show some level-2 large deviation principles for rational maps satisfying a strong form of non-uniform hyperbolicity, called 'Topological Collet-Eckmann'. More precisely, we prove a large deviation principle for the distribution of iterated preimages, periodic points, and Birkhoff averages. For this purpose we show that each Holder continuous potential admits a unique equilibrium state, and that the pressure function can be characterized in terms of iterated preimages, periodic points, and Birkhoff averages. Then we use a variant of a general result of Kifer.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Comman, Henri | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | RIVERA-LETELIER, JUAN EDUARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|