Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2010102 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Omega in R-n (n >= 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Omega(c) := R-n\(Omega) over bar. The two problems are coupled by transmission and Signorini contact conditions on the interface Gamma = partial derivative Omega. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD) given in terms of boundary integral operators. The resulting variational formulation becomes a variational inequality with a linear operator. Then we treat the corresponding numerical scheme and discuss an approximation of the NtD mapping with an appropriate discretization of the inverse Poincare-Steklov operator. In particular, assuming some abstract approximation properties and a discrete inf-sup condition, we show unique solvability of the discrete scheme and obtain the corresponding a-priori error estimate. Next, we prove that these assumptions are satisfied with Raviart-Thomas elements and piecewise constants in Omega, and continuous piecewise linear functions on Gamma. We suggest a solver based on a modified Uzawa algorithm and show convergence. Finally we present some numerical results illustrating our theory.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 2 | Maischak, Matthias | Hombre |
Brunel Univ - Reino Unido
Brunel University London - Reino Unido |
| 3 | Stephan, Ernst-Peter | - |
Leibniz Univ Hannover - Alemania
Gottfried Wilhelm Leibniz Universität - Alemania Fakultät für Mathematik und Physik - Alemania |
| Fuente |
|---|
| German Academic Exchange Service (DAAD) |
| German Research Foundation (DFG) |
| CMM, Universidad de Chile |
| Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA) of the Universidad de Concepcion |
| Agradecimiento |
|---|
| This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile, by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA) of the Universidad de Concepcion, by the German Academic Exchange Service (DAAD) through the project 412/HP-hys-rsch, and by the German Research Foundation (DFG) under grant Ste 573/3. |