Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NA.2011.03.029 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Given a is an element of L(1)(R) and A the generator of an L(1)-integrable family of bounded and linear operators defined on a Banach space X, we prove the existence of an almost automorphic mild solution to the semilinear integral equation u(t) = integral(t)(-infinity) a(t - s)[Au(s) + f(s, u(s))]ds for each f : R x X -> X S(p)-almost automorphic in t, uniformly in x is an element of X, and satisfying diverse Lipschitz type conditions. For the scalar linear case, we prove that a is an element of L(1)(R) completely monotonic is already sufficient. (C) 2011 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | LIZAMA-YAÑEZ, CARLOS | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | PONCE-CUBILLOS, RODRIGO EDUARDO | Hombre |
Universidad de Santiago de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Agradecimiento |
|---|
| We would like to thank the anonymous referee for his or her useful comments which led to improvement of the paper. The first author was partially supported by FONDECYT under grant number 1100485. |
| We would like to thank the anonymous referee for his or her useful comments which led to improvement of the paper. The first author was partially supported by FONDECYT under grant number 1100485 . |