Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JSAMES.2011.01.003 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The use of Synthetic Aperture Radar interferometry (InSAR) in northern Chile, one of the most seismically active regions in the world, is of great importance. InSAR enables geodesists not only to accurately measure Earth's motions but also to improve fault slip map resolution and our knowledge of the time evolution of the earthquake cycle processes. Fault slip mapping is critical to better understand the mechanical behavior of seismogenic zones and has fundamental implications for assessing hazards associated with megathrust earthquakes. However, numerous sources of errors can significantly affect the accuracy of the geophysical parameters deduced by InSAR. Among them, atmospheric phase delays caused by changes in the distribution of water vapor can lead to biased model parameter estimates and/or to difficulties in interpreting deformation events captured with InSAR. The hyper-arid climate of northern Chile might suggest that differential delays are of a minor importance for the application of InSAR techniques. Based on GPS, Moderate Resolution Imaging Spectroradiometer (MODIS) data our analysis shows that differential phase delays have typical amplitudes of about 20 mm and may exceptionally exceed 100 mm and then may impact the inferences of fault slip for even a Mw 8 earthquakes at 10% level. In this work, procedures for mitigating atmospheric effects in InSAR data using simultaneous MODIS time series are evaluated. We show that atmospheric filtering combined with stacking methods are particularly well suited to minimize atmospheric contamination in InSAR imaging and significantly reduce the impact of atmospheric delay on the determination of fundamental earthquake parameters. (C) 2011 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Remy, D. | - |
Obs Midi Pyrenee - Francia
CNRS Centre National de la Recherche Scientifique - Francia IRD Institut de Recherche pour le Developpement - Francia |
| 2 | FALVEY-SINCLAIR, MARK JOHN | Hombre |
Universidad de Chile - Chile
|
| 3 | Bonvalot, S. | Hombre |
Obs Midi Pyrenee - Francia
CNRS Centre National de la Recherche Scientifique - Francia IRD Institut de Recherche pour le Developpement - Francia |
| 4 | Chlieh, Mohamed | Hombre |
Univ Nice - Francia
IRD Institut de Recherche pour le Developpement - Francia |
| 5 | Gabalda, G. | - |
Obs Midi Pyrenee - Francia
CNRS Centre National de la Recherche Scientifique - Francia IRD Institut de Recherche pour le Developpement - Francia |
| 6 | Froger, Jean-Luc | Hombre |
Obs Phys Globe Clermont Ferrand - Francia
LMV-CNRS-OPGC-UBP - Francia IRD Institut de Recherche pour le Developpement - Francia Laboratoire Magmas et Volcans, Clermont-Ferrand - Francia |
| 7 | LEGRAND-CABANES, DENIS XAVIER FRANCOIS | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Universidad de Chile |
| FONDECYT-CONICYT |
| ECOS-CONICYT |
| Institut de recherche pour le développement |
| Institut de Recherche pour le Développement |
| IRD-CONICYT |
| University of Chile (Department of Geophysics/Meteorology) |
| IRD (Dept. DME, DSF) |
| Department of Geophysics/Meteorology |
| Agradecimiento |
|---|
| We wish to thank M. Pritchard for his useful comments and his encouragement. We thank ENTEL Chile (Iquique), Direccion General de Aeronautica Civil de Chile (Iquique), Mineria Dona Ines de Collahuasi, Universidad Arturo Prat, Sernageomin Iquique for the logistic support for the northern Chile GPS network. The GPS data were acquired in the frame of the French-Chilean cooperation program by IRD, IPG Paris and Department of Geophysics and the Seismological Service of the University of Chile. The MERIS and ENVISAT data have been acquired through ESA research projects: ENVISAT A-O n<SUP>o</SUP>857 (PI: JL. Froger) and Category 1 research project N<SUP>o</SUP>2899 (PI: S. Bonvalot). This study has been supported by IRD (Dept. DME, DSF), University of Chile (Department of Geophysics/Meteorology) and ECOS-CONICYT (project n<SUP>o</SUP>C000U03) FONDECYT-CONICYT (project n<SUP>o</SUP> 1030800) and IRD-CONICYT. |
| We wish to thank M. Pritchard for his useful comments and his encouragement. We thank ENTEL Chile (Iquique), Dirección General de Aeronáutica Civil de Chile (Iquique), Mineria Dona Ines de Collahuasi, Universidad Arturo Prat, Sernageomin Iquique for the logistic support for the northern Chile GPS network. The GPS data were acquired in the frame of the French-Chilean cooperation program by IRD, IPG Paris and Department of Geophysics and the Seismological Service of the University of Chile. The MERIS and ENVISAT data have been acquired through ESA research projects: ENVISAT A-O n°857 (PI: JL. Froger) and Category 1 research project N°2899 (PI: S. Bonvalot). This study has been supported by IRD (Dept. DME, DSF), University of Chile (Department of Geophysics/Meteorology) and ECOS-CONICYT (project n°C00U03) FONDECYT-CONICYT (project n° 1030800) and IRD-CONICYT. |