Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2011.04.009 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A new general formulation for the spatial modeling of combat is presented, where the main drivers are movement attitudes and struggle evolution. This model in its simplest form is represented by a linear set of two coupled partial differential equations for two independent functions of the space and time variables. Even though the problem has a linear shape, non-negative values for the two functions render this problem as nonlinear. In contrast with other attempts, this model ensures stability and theoretical consistency with the original Lanchester Equations, allowing for a better understanding and interpretation of the spatial modeling. As a numerical illustration a simple combat situation is developed. The model is calibrated to simulate different troop movement tactics that allow an invader force to provoke maximum damage at a minimum cost. The analysis provided here reviews the trade-off between spatial grid and time stepping for attrition cases and then extends it to a new method for guaranteeing good numerical behavior when the solution is expected to grow along the time variable. There is a wide variety of spatial problems that could benefit from this analysis. (C) 2011 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GONZALEZ-QUIJON, EDUARDO | Hombre |
Universidad Adolfo Ibáñez - Chile
Universidad Adolfo Ibez - Chile |
| 2 | VILLENA-CHAMORRO, MARCELO JULIAN | Hombre |
Universidad Adolfo Ibáñez - Chile
Universidad Adolfo Ibez - Chile |