Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVD.84.064028 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Godel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Godel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Konoplya, R. A. | - |
UNIV TUBINGEN - Alemania
Centro de Estudios Científicos - Chile Universität Tübingen - Alemania Eberhard Karls Universität Tübingen - Alemania |
| 2 | Zhidenko, A. | - |
Univ Fed ABC - Brasil
Universidade Federal do ABC - Brasil |
| Fuente |
|---|
| Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
| Alexander von Humboldt Foundation, Germany |
| Agradecimiento |
|---|
| This work was partially supported by the Alexander von Humboldt foundation, Germany. R. A. K. acknowledges hospitality of the Centro de Estudios Cientificos (CECS) in Valdivia (Chile). R. A. K. would like also to thank Ricardo Troncoso and Jorge Zanelli for useful discussions. A. Z. was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). |