Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/100807168 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second-order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, the mentioned KKT system behaves (with some restrictions) similarly as in nonlinear programming.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Outrata, Jiri V. | - |
Acad Sci Czech Republic - República Checa
Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic - República Checa Acad Sci Czech Republ - República Checa |
| 2 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad de Chile - Chile
|
| 2 | Héctor Ramírez, C. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| ARC |
| Grant Agency of the Czech Academy of Sciences |
| Fondap in Applied Mathematics |
| Centro de Modelamiento Matematico, Universidad de Chile |