Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00440-010-0297-4 | ||||
| Año | 2011 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the probabilistic evolution of a birth and death continuous time measure-valued process with mutations and ecological interactions. The individuals are characterized by (phenotypic) traits that take values in a compact metric space. Each individual can die or generate a new individual. The birth and death rates may depend on the environment through the action of the whole population. The offspring can have the same trait or can mutate to a randomly distributed trait. We assume that the population will be extinct almost surely. Our goal is the study, in this infinite dimensional framework, of the quasi-stationary distributions of the process conditioned on non-extinction. We first show the existence of quasi-stationary distributions. This result is based on an abstract theorem proving the existence of finite eigenmeasures for some positive operators. We then consider a population with constant birth and death rates per individual and prove that there exists a unique quasi-stationary distribution with maximal exponential decay rate. The proof of uniqueness is based on an absolute continuity property with respect to a reference measure.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Collet, P. | Hombre |
Ecole Polytech - Francia
Centre de Physique Theorique de l' Ecole Polytechnique - Francia |
| 2 | MARTINEZ-AGUILERA, SERVET | Hombre |
Universidad de Chile - Chile
|
| 3 | Meleard, S. | Mujer |
Ecole Polytech - Francia
Centre de Mathématiques Appliquées - Francia |
| 4 | SAN MARTIN-ARISTEGUI, JAIME RICARDO | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Guggenheim Fellowship |
| CMM Basal |
| Millennium Nucleus Information and Randomness |
| CMM FONDAP |
| Agradecimiento |
|---|
| The authors are grateful to two anonymous referees for their comments, suggestions and corrections that greatly helped to improve the presentation of this article. The authors acknowledge the partial support given by the Millennium Nucleus Information and Randomness P04-069-F, CMM FONDAP and CMM BASAL projects. S. Martinez thanks Guggenheim Fellowship and the hospitality of Ecole Polytechnique, Palaiseau, and Sylvie Meleard the ECOS-CONICYT project. |