Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NA.2011.07.058 | ||||
| Año | 2012 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we introduce a new class, called F, of linear transformations defined from the space of real n x n symmetric matrices into itself. Within this new class, we show the equivalence between Q- and Q(b)-transformations. We also provide conditions under which a linear transformation belongs to F. Moreover, this class, when specialized to square matrices of size n, turns out to be the largest class of matrices for which such equivalence holds true in the context of standard linear complementary problems. (C) 2011 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | LOPEZ-LUIS, JULIO CESAR | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | LOPEZ-MONTOYA, RUBEN LUIS | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 3 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad de Chile - Chile
|
| 3 | Héctor Ramírez, C. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| CONICYT-Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| CONICYT-Chile, via FONDECYT |
| BASAL project (Centro de Modelamiento Matematico, Universidad de Chile) |
| Fondap in Applied Mathematics |
| Agradecimiento |
|---|
| This research was supported by CONICYT-Chile, via FONDECYT projects 3100131 (Julio Lopez), 1100919 (Ruben Lopez), 1070297 and 1110888 (Hector Ramirez). The second and third authors were also supported by FONDAP in Applied Mathematics and BASAL Project (Centro de Modelamiento Matematico, Universidad de Chile). Finally, we thank to an anonymous reviewer who has substantially contributed to the improved quality of the revision. |
| This research was supported by CONICYT-Chile , via FONDECYT projects 3100131 (Julio López), 1100919 (Rúben López), 1070297 and 1110888 (Héctor Ramírez). The second and third authors were also supported by FONDAP in Applied Mathematics and BASAL Project (Centro de Modelamiento Matemático, Universidad de Chile). Finally, we thank to an anonymous reviewer who has substantially contributed to the improved quality of the revision. |