Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVB.85.115417 | ||||
| Año | 2012 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A theoretical investigation of the adsorption of Mn single atoms and dimers on the (111) surface of Cu, Ag, and Au, within the framework of the density functional theory, is presented. First, the bulk and the clean (111) surface electronic structures are calculated, with results that agree well with previous reports. To understand the adatom-substrate interaction, also the electronic characteristics of the free Mn dimer are determined. Then, the electronic structure of the Mn adatom, chemisorbed on four different surface geometries, is analyzed for the three noble metals. It is found that the most stable geometry, in all three cases, Cu, Ag, and Au, occurs when the Mn atom is chemisorbed on threefold coordinated sites. For the dimer, the lowest-energy configuration corresponds to the molecule lying parallel to the surface. In the three noble metals, the geometry corresponds to both atoms chemisorbed in threefold coordinated sites, but with different local symmetry. It is also found that the magnetic configuration with the lowest energy corresponds to the antiferromagnetic arrangement of Mn atoms, with individual magnetic moments close to 5 mu(B). The ferromagnetic and antiferromagnetic solutions, in the case of a Ag substrate, are close in energy. It is also found that in this case the Mn-2 molecule is chemisorbed with very similar energy on various geometries. To study the dynamical motion of the dimer components, we calculated the potential energy barriers for the Mn motion in the various surfaces. In contrast to Cu and Au, this leads to the conclusion that on Ag the Mn dimer moves relatively freely.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MUNOZ-SAEZ, FRANCISCO JAVIER | Hombre |
Universidad de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 2 | Romero, Aldo H. | Hombre |
CINVESTAV - México
Centro de Investigación y de Estudios Avanzados - México Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional - México |
| 3 | Mejia-Lopez, Jose | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Pontificia Universidad Católica de Chile - Chile |
| 4 | MORAN-LOPEZ, JOSE LUIS | Hombre |
Univ Nacl Autonoma Mexico - México
Universidad Nacional Autónoma de México - México |
| Fuente |
|---|
| FONDECYT |
| Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia |
| CONACYT (Mexico) |
| Fondo de Innovacion para la Competitividad-MINECON |
| Agradecimiento |
|---|
| The authors thanks the support from FONDECYT through Grants No. 1100365 (J.M.-L.) and No. 11110510 (F. M.), from Grant ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, from Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia, under Project No. FB 0807, and from CONACYT (Mexico) through Grants No. 61417 and No. J-152153-F. The use of computer resources from the Centro Nacional de Supercomputo (CNS) of the Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICYT), SLP, Mexico and the TACC Supercomputer center in Texas are also acknowledged. |