Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Semi-Supervised Classification Using Tree-Based Self-Organizing Maps
Indexado
WoS WOS:000305356500003
Scopus SCOPUS_ID:83755228826
DOI 10.1007/978-3-642-25832-9_3
Año 2011
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper presents a classifier which uses a tree-based Neural Network (NN), and uses both, unlabeled and labeled instances. First, we learn the structure of the data distribution in an unsupervised manner. After convergence, and once labeled data become available, our strategy tags each of the clusters according to the evidence provided by the instances. Unlike other neighborhood-based schemes, our classifier uses only a small set of representatives whose cardinafity can be much smaller than that of the input set. Our experiments show that, on average, the accuracy of such classifier is reasonably comparable to those obtained by some of the state-of-the-art classification schemes that only use labeled instances during the training phase. The experiments also show that improved levels of accuracy can be obtained by imposing trees with a larger number of nodes.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ASTUDILLO-HERNANDEZ, CESAR ALEJANDRO Hombre Universidad de Talca - Chile
2 Oommen, B. John - CARLETON UNIV - Canadá
Carleton University, School of Computer Science - Canadá
University of Agder - Noruega
Carleton University - Canadá
3 Wang, DH -
4 Reynolds, M -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 50.0 %
Citas No-identificadas: 50.0 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 50.0 %
Citas No-identificadas: 50.0 %

Financiamiento



Fuente
Natural Sciences and Engineering Research Council of Canada
NSERC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Chancellors Professor ; Fellow : IEEE and Fellow : IAPR. This author is also an Adjunct Professor with the University of Agder in Grimstad, Norway. The work of this author was partially supported by NSERC, the Natural Sciences and Engineering Research Council of Canada.

Muestra la fuente de financiamiento declarada en la publicación.