Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



IDENTIFICATION OF KNOTTY CORE IN <i>PINUS RADIATA</i> LOGS FROM CT IMAGES: COMPARATIVE STUDY
Indexado
WoS WOS:000306539900006
Scopus SCOPUS_ID:84863186499
SciELO S0718-221X2012000100006
DOI 10.4067/S0718-221X2012000100006
Año 2012
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The aim of this study was to compare the accuracy of both the maximum likelihood classifier (ML) algorithm and another one based on an artificial neural networks classifier (ANN) algorithm for knotty core identification in CT images of pruned radiata pine (Pinus radiata D. Don) logs. For this purpose, thirty pruned radiata pine logs were chosen and then scanned in an X-ray multi-slice medical scanner (Computed Tomography (CT)). From the total CT images obtained, a sample of 270 CT images was selected for this study. This CT images were classified using both methods and the thematic map obtained afterwards, were filtered by a 7 x 7 median filter. Quantitative assessment results showed that knotty core can be identified with 98.5 % and 96.3 % accuracy by using the ML and ANN classifiers respectively. Although both algorithms showed a high capacity level to detect knotty core statistical analysis showed significant differences among those accuracy values; this is an indication that the maximum likelihood classifier algorithm shows a better performance compared to the algorithms based on artificial neural networks for knotty core identification in CT images of radiata pine logs.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Materials Science, Paper & Wood
Scopus
Sin Disciplinas
SciELO
Agricultural Sciences

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ricardo Espinoza, G. Hombre Universidad del Bío Bío - Chile
1 Rojas, Gerson Hombre Universidad del Bío Bío - Chile
2 Ortiz Iribarren, Oscar Hombre Universidad del Bío Bío - Chile
2 Iribarren, Oscar Ortiz Hombre Universidad del Bío Bío - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico de Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.