Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10107-011-0477-8 | ||||
| Año | 2012 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider a quadratic optimal control problem governed by a nonautonomous affine ordinary differential equation subject to nonnegativity control constraints. For a general class of interior penalty functions, we provide a first order expansion for the penalized states and adjoint states around the state and adjoint state of the original problem. Our main argument relies on the following fact: if the optimal control satisfies strict complementarity conditions for its Hamiltonian except for a set of times with null Lebesgue measure, the functional estimates for the penalized optimal control problem can be derived from the estimates of a related finite dimensional problem. Our results provide several types of efficiency measures of the penalization technique: error estimates of the control for L (s) norms (s in [1, +a]), error estimates of the state and the adjoint state in Sobolev spaces W (1,s) (s in [1, +a)) and also error estimates for the value function. For the L (1) norm and the logarithmic penalty, the sharpest results are given, by establishing an error estimate for the penalized control of order where is the (small) penalty parameter.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALVAREZ-DAZIANO, FELIPE | Hombre |
Universidad de Chile - Chile
|
| 2 | Bolte, J. | Hombre |
Univ Toulouse 1 - Francia
Université Toulouse 1 Capitole - Francia |
| 3 | Bonnans, J. Frederic | - |
Ecole Polytech - Francia
Centre de Mathématiques Appliquées - Francia |
| 4 | Silva, Francisco J. | Hombre |
Univ Roma La Sapienza - Italia
Università degli Studi di Roma La Sapienza - Italia Sapienza Università di Roma - Italia |
| Fuente |
|---|
| Millennium Institute on Complex Engineering Systems |
| Basal grants (CONICYT) |
| Chair "Mathematical modelling and numerical simulation, F-EADS-Ecole Polytechnique-INRIA" |
| Agradecimiento |
|---|
| The first version of the paper was issued while the second and fourth authors were part of the Commands team at INRIA Saclay-Ile-de-France, CMAP (Ecole Polytechnique) and UMA (ENSTA). F. Alvarez's research was supported by the Millennium Institute on Complex Engineering Systems (MIDEPLAN P05-004-F) and Basal grants (CONICYT). J. Bolte's research was supported by grant ANR-08-BLAN-0294-01.J. F. Bonnans's research was partially supported by the Chair "Mathematical modelling and numerical simulation, F-EADS-Ecole Polytechnique-INRIA". |