Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JFA.2019.06.013 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we consider the Liouville equation Delta u+lambda(2)e(u) = 0 with Dirichlet boundary conditions in a two dimensional, doubly connected domain Omega. We show that there exists a simple, closed curve gamma subset of Omega such that for a sequence lambda(n) -> 0 and a sequence of solutions u(n) it holds u(n)/log 1/lambda(n) -> H, where H is a harmonic function in Omega\gamma and lambda(2)(n)/log 1/lambda(n) integral(Omega)e(un) dx -> 8 pi c(Omega), where c(Omega) is a constant depending on the conformal class of Omega only. (C) 2019 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | KOWALCZYK, MICHAL ANTONI | Hombre |
Universidad de Chile - Chile
|
| 2 | Pistoia, Angela | Mujer |
Sapienza Univ Roma - Italia
Università degli Studi di Roma La Sapienza - Italia Sapienza Università di Roma - Italia |
| 3 | Vaira, Giusi | Mujer |
Univ Campania L Vanvitelli - Italia
Università degli Studi della Campania Luigi Vanvitelli - Italia |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Basal CMM-Chile |
| Chilean research grants |
| Sapienza research grant "Nonlinear PDE's in geometry and physics" |
| GNAMPA research grant "Esistenza e molteplicita di soluzioni per alcuni problemi ellittici non lineari" |
| Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni |
| Fondo Basal AFB170001 CMM-Chile |
| Agradecimiento |
|---|
| M. Kowalczyk was partially supported by Chilean research grants Fondecyt 1130126 and 1170164 and Fondo Basal AFB170001 CMM-Chile. Part of this work was done during his visits at the University of Warsaw and Hiroshima University. A. Pistoia was partially supported by Sapienza research grant "Nonlinear PDE's in geometry and physics". G. Vaira was partially supported by GNAMPA research grant "Esistenza e molteplicita di soluzioni per alcuni problemi ellittici non lineari". |
| M. Kowalczyk was partially supported by Chilean research grants Fondecyt 1130126 and 1170164 and Fondo Basal AFB170001 CMM-Chile. Part of this work was done during his visits at the University of Warsaw and Hiroshima University. A. Pistoia was partially supported by Sapienza research grant “Nonlinear PDE's in geometry and physics”. G. Vaira was partially supported by GNAMPA research grant “Esistenza e molteplicitá di soluzioni per alcuni problemi ellittici non lineari”.☆ M. Kowalczyk was partially supported by Chilean research grants Fondecyt 1130126 and 1170164 and Fondo Basal AFB170001 CMM-Chile. Part of this work was done during his visits at the University of Warsaw and Hiroshima University. A. Pistoia was partially supported by Sapienza research grant “Nonlinear PDE's in geometry and physics”. G. Vaira was partially supported by GNAMPA research grant “Esistenza e molteplicitá di soluzioni per alcuni problemi ellittici non lineari”. |