Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-642-23957-1_10 | ||||
| Año | 2011 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present a custom hardware system for image recognition, featuring a dimensionality reduction network and a classification stage. We use Bi-Directional PCA and Linear Discriminant Analysis for feature extraction, and classify based on Manhattan distances. Our FPGA-based implementation runs at 75MHz, consumes 157.24mW of power, and can classify a 61 x 49-pixel image in 143.7 mu s, with a sustained throughput of more than 7,000 classifications per second. Compared to a software implementation on a workstation, our solution achieves the same classification performance (93.3% hit rate), with more than twice the throughput and more than an order of magnitud less power.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Pizarro, Pablo | Hombre |
Universidad de Concepción - Chile
|
| 2 | FIGUEROA-YEVENES, MAXIMILIANO | Hombre |
Universidad de Concepción - Chile
|
| 3 | Iliadis, L | - | |
| 4 | Jayne, C | - |