Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging
Indexado
WoS WOS:000312577000011
Scopus SCOPUS_ID:84869494759
DOI 10.1016/J.JFOODENG.2012.10.001
Año 2013
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Currently, blueberries are inspected and sorted by color, size and/or firmness (or softness) in packing houses, using different inspection techniques like machine vision and mechanical vibration or impact. A new inspection technique is needed for effectively assessing both external features and internal quality attributes of individual blueberries. This paper reports on the use of hyperspectral imaging technique for predicting the firmness and soluble solids content (SSC) of blueberries. A pushbroom hyperspectral imaging system was used to acquire hyperspectral reflectance images from 302 blueberries in two fruit orientations (i.e., stem and calyx ends) for the spectral region of 500-1000 nm. Mean spectra were extracted from the regions of interest for the hyperspectral images of each blueberry. Prediction models were developed based on partial least squares method using cross validation and were externally tested with 25% of the samples. Better firmness predictions (R = 0.87) were obtained, compared to SSC predictions (R = 0.79). Fruit orientation had no or insignificant effect on the firmness and SSC predictions. Further analysis showed that blueberries could be sorted into two classes of firmness. This research has demonstrated the feasibility of implementing hyperspectral imaging technique for sorting blueberries for firmness and possibly SSC to enhance the product quality and marketability. (C) 2012 Elsevier Ltd. All rights reserved.

Revista



Revista ISSN
Journal Of Food Engineering 0260-8774

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Chemical
Food Science & Technology
Scopus
Food Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Leiva-Valenzuela, Gabriel A. Hombre Pontificia Universidad Católica de Chile - Chile
Michigan State Univ - Estados Unidos
Michigan State University - Estados Unidos
2 Lu, Renfu - Michigan State Univ - Estados Unidos
Michigan State University - Estados Unidos
3 AGUILERA-RADIC, JOSE MIGUEL Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 3.14 %
Citas No-identificadas: 96.86 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 3.14 %
Citas No-identificadas: 96.86 %

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
U.S. Department of Agriculture
Comisión Nacional de Investigación Científica y Tecnológica
National Commission for Science and Technology
Michigan State University
National Commission for Science and Technology (CONICYT) of Chile
USDA/ARS
Agricultural Research Service

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Mr. Gabriel A. Leiva-Valenzuela thanks The National Commission for Science and Technology (CONICYT) of Chile for providing a fellowship, which allowed him to carry out the research in the USDA/ARS postharvest engineering laboratory at Michigan State University in USA. The authors also acknowledge helpful discussions with Dr. Fernando Mendoza, Research Agricultural Engineer with USDA/ARS at East Lansing, Michigan, and valuable suggestions in performing the experiment from Dr. Haiyan Cen, and statistical analysis from Mr. Irwin Donis-Gonzalez and Mr. Ahmed Rady, graduate students in Biosystems Engineering at Michigan State University.
Mr. Gabriel A. Leiva-Valenzuela thanks The National Commission for Science and Technology (CONICYT) of Chile for providing a fellowship, which allowed him to carry out the research in the USDA/ARS postharvest engineering laboratory at Michigan State University in USA. The authors also acknowledge helpful discussions with Dr. Fernando Mendoza, Research Agricultural Engineer with USDA/ARS at East Lansing, Michigan, and valuable suggestions in performing the experiment from Dr. Haiyan Cen, and statistical analysis from Mr. Irwin Donis-Gonzalez and Mr. Ahmed Rady, graduate students in Biosystems Engineering at Michigan State University.

Muestra la fuente de financiamiento declarada en la publicación.