Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Neural networks to predict earthquakes in Chile
Indexado
WoS WOS:000313011600048
Scopus SCOPUS_ID:84876331365
DOI 10.1016/J.ASOC.2012.10.014
Año 2013
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A new earthquake prediction system is presented in this work. This method, based on the application of artificial neural networks, has been used to predict earthquakes in Chile, one of the countries with larger seismic activity. The input values are related to the b-value, the Bath's law, and the Omori-Utsu's law, parameters that are strongly correlated with seismicity, as shown in solid previous works. Two kind of prediction are provided in this study: The probability that an earthquake of magnitude larger than a threshold value happens, and the probability that an earthquake of a limited magnitude interval might occur, both during the next five days in the areas analyzed. For the four Chile's seismic regions examined, with epicenters placed on meshes with dimensions varying from 0.5 degrees x 0.5 degrees to 1 degrees x 1 degrees, a prototype of neuronal network is presented. The prototypes predict an earthquake every time the probability of an earthquake of magnitude larger than a threshold is sufficiently high. The threshold values have been adjusted with the aim of obtaining as few false positives as possible. The accuracy of the method has been assessed in retrospective experiments by means of statistical tests and compared with well-known machine learning classifiers. The high success rate achieved supports the suitability of applying soft computing in this field and poses new challenges to be addressed. (C) 2012 Elsevier B.V. All rights reserved.

Revista



Revista ISSN
Applied Soft Computing 1568-4946

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Scopus
Software
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Reyes-Molina, Jorge Hombre TGT - Chile
2 Morales-Esteban, A. Hombre Universidad de Sevilla - España
University of Seville - España
Univ Seville - España
3 Martinez-Alvarez, F. Hombre Pablo de Olavide Univ Seville - España
University of Seville - España
Universidad Pablo de Olavide, de Sevilla - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 6.84 %
Citas No-identificadas: 93.16 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 6.84 %
Citas No-identificadas: 93.16 %

Financiamiento



Fuente
Ministerio de Ciencia y Tecnología
Spanish Ministry of Science and Technology
Ministerio de Ciencia y Tecnología
TGT
JPI

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors want to thank TGT-www.geofisica.cl for the support through grants number 2210 and 2211. The financial support given by the Spanish Ministry of Science and Technology, projects BIA2004-01302 and TIN2011-28956-C02-01 are equally acknowledged. This work has also been partially funded by a JPI 2012 Banco Santander's grant. Finally, the authors want to thank the reviewers for their careful reviews and helpful suggestions.
The authors want to thank TGT - www.geofisica.cl for the support through grants number 2210 and 2211 . The financial support given by the Spanish Ministry of Science and Technology , projects BIA2004-01302 and TIN2011-28956-C02-01 are equally acknowledged. This work has also been partially funded by a JPI 2012 Banco Santander's grant. Finally, the authors want to thank the reviewers for their careful reviews and helpful suggestions.

Muestra la fuente de financiamiento declarada en la publicación.